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Abstract
Ground-based magnetometer stations represent a multi-viewpoint and easy-to-access system for sounding Earth’s magnetic 
field disturbances in the inner magnetosphere. Using Ultra-Low Frequency (ULF) measurements recorded from pairs of 
meridionally aligned stations, it is possible to determine the Field Line Resonance (FLR) frequencies, which are directly 
related to the equatorial magnetospheric plasma mass density. Recently, it has been shown by Foldes et al. (J Geophys Res 
126(5):e2020JA029008. https:// doi. org/ 10. 1029/ 2020J A0290 08, 2021) that the Machine Learning (ML) algorithms are valu-
able tools for detecting FLRs by exploiting the useful information provided by cross-phase Fourier spectra, which are at the 
heart of the ULF technique for inferring the magnetospheric mass density. The main shortcoming of this approach is that it 
is not possible to discriminate between active and quiet times in terms of resonances. It is commonly known that detecting 
FLRs using cross-phase spectra may often be unfeasible due to data gaps, noisy signals, and/or quiescent ULF wave periods. 
To handle these situations, we implement an ML classification algorithm to identify periods when the resonance frequen-
cies are observable and thus easily estimated. Our algorithm can distinguish samples into three main classes: periods with 
observed frequency (“Freq" class) from others (“NoFreq"), and, in addition, it can determine whether the considered field 
line crosses the plasmasphere boundary layer (PBL or plasmapause) at a given time. The results of our method are validated 
for a particular pair of stations (at L = 2.9 ) along the Equatorial quasi-Meridional Magnetometer Array (EMMA), using a 
large dataset comprising different geomagnetic conditions. The proposed approach might be combined with a regression 
algorithm (such as those proposed in Foldes et al. (J Geophys Res 126(5):e2020JA029008. https:// doi. org/ 10. 1029/ 2020J 
A0290 08, 2021)) in a two-stage ML pipeline, with the ultimate goal of implementing a completely automated system for 
the real-time monitoring of the plasmasphere dynamics from ground-based magnetometer stations.

Keywords Geomagnetic field line resonance · Plasmaspheric mass density · Inner magnetosphere · Machine learning · 
Space weather

1 Introduction

The Earth’s plasmasphere is a crucial region for Space 
Weather because of its dominant contribution to the mass 
content of the inner magnetosphere, and then in determining 
the magnetohydrodynamic response of the magnetosphere 
to solar wind perturbations. The plasmasphere is mainly 
composed of low energy plasma (at ∼ 1eV  ) of ionospheric 
origin. It can extend up to approximately 6 RE , even though 
its shape and extension significantly vary between day and 
night and with different geomagnetic conditions (Sandel 
et al. 2003). This region has seen a surge of interest in 
recent years for its importance in wave–particle interactions 
(Thorne 2010; Liemohn 2006) and because of its coupling 
with the underlying layer, the ionosphere (Chappell 2015); 
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in addition, the outer boundary, called the plasmapause [or 
plasmasphere boundary layer, PBL (Carpenter and Lemaire 
2004)] represents a direct information source for the strength 
of the solar wind and solar storms impact as, for instance, it 
may move earthward up to 1.5–2 RE during major geomag-
netic storms (Obana et al. 2019). The plasma, trapped in 
an approximately dipolar magnetic field configuration, also 
varies in composition (Roberts et al. 1987; Del Corpo et al. 
2022) and density (Carpenter and Anderson 1992; Ozhogin 
et al. 2012), with this latter ranging over several orders of 
magnitude and, in particular, decreasing when moving away 
from the Earth. The PBL also marks the region where the 
plasma density drastically drops (Liu et al. 2015; Cho et al. 
2015). In the last decades, mostly empirical, but also theo-
retical and hybrid models have been developed to predict 
the position and dynamics of the plasmapause (see, e.g., 
Cho et al. (2015); Carpenter and Anderson (1992); O’Brien 
and Moldwin (2003); Ripoll et al. (2023); Goldstein et al. 
(2019); Pierrard and Voiculescu (2011); Del Corpo et al. 
(2020)). In a simple dipolar approximation of the magnetic 
field lines, it has been shown that the equatorial plasma 
density at a distance L from Earth, where L is the McIl-
wain parameter, can be inferred from the measure of the 
resonance frequency �L ∼ 1∕f 2

L
 of the field line crossing the 

equator at L (Cummings et al. (1969)). This can be obtained 
by considering the magnetic field lines as vibrating strings 
with two fixed ends, which is a suitable approximation when 
the ionospheric conductivity is very high (i.e., infinite con-
ductivity approximation), and therefore especially when both 
the field line footprints are on the day side. The knowledge 
of the field line resonance (FLR) frequency, assuming a 
proper magnetic field model and mass density profile along 
the line (see Del Corpo et al. (2019) and reference therein), 
allows us to estimate the equatorial plasma density by solv-
ing the wave equation proposed by Singer et al. (1981). 
FLRs can be measured using ground-based magnetometer 
stations, such as those of the European quasi-Meridional 
Magnetometer Array (EMMA, see  Lichtenberger et  al. 
(2013)). They represent a reliable and longstanding multi-
viewpoint of the plasmaspheric dynamics. The estimation 
of FLR frequencies from magnetometer measurements is 
obtained through a dynamical Fourier cross-spectral analysis 
of the signals of two stations separated in latitude around 
1–3◦ and approximately aligned along a magnetic meridian. 
The method was proposed by Baransky et al. (1985) and 
then developed by Waters et al. (1991). It is mainly based on 
the assumption that resonance frequencies decrease along a 
meridian when moving poleward and vary linearly for small 
displacements.

Hence, the resonance frequency of a field line having 
one footprint at the mid-point between two stations is eval-
uated by computing the cross-phase ( Δ� = �2 − �1 ) and 

the amplitude ratio A2∕A1 from the Fourier spectra of the 
North–South component of the measured signal; here, the 
first station ( S1 ) is considered to be poleward. In these condi-
tions, FLR frequencies are identified as frequencies where 
the cross-phase peaks and, simultaneously, the amplitude 
ratio crosses unity with a positive slope. However, the radial 
behavior of the FLR frequency inverts across a steep plasma-
pause, and a cross-phase minimum (rather than a maximum) 
may be detected if the two stations map near the plasma-
pause  (Menk et al. 2004; Kale et al. 2007). The situation 
can be re-established by reversing the order of the two sta-
tions when computing the cross-spectrum (Del Corpo et al. 
2019) (e.g., Δ�PBL = −Δ� = �1 − �2 ). The first attempt to 
estimate FLRs by exploiting the information given by the 
Fourier cross-phase analysis in combination with Machine 
Learning (ML) techniques was made by Foldes et al. (2021) 
(hereafter F21). In that work, the authors adopted several 
ML algorithms for estimating resonance frequencies using 
the EMMA measurements, at various latitudes and different 
geomagnetic conditions. The results showed good agreement 
between the validated and estimated frequencies. Neverthe-
less, the main limitation of this approach, in view of its use 
for real-time (or near real-time) monitoring of the plasmas-
phere, is that it works only with samples where resonances 
are effectively triggered, producing a clear evidence in the 
cross-phase spectra. This is not generally true; apart from 
quiescent ultra-low frequency periods (Balasis et al. 2019), 
detecting FLR frequencies may be problematic for a low 
signal-to-noise ratio and instrumental issues, such as data 
gaps. Therefore, to implement a completely automated pro-
cedure based on ML algorithms, we propose a classifica-
tion algorithm for discriminating samples with an observed 
resonance from the others. The method adopts a tree-based 
classification algorithm, named eXtreme Gradient Boosting 
(XGB, Chen and Guestrin (2016)), to first perform a binary 
classification into frequency (“Freq”) and no frequency 
(“NoFreq”) samples, then pointing to a more challenging 
multi-class approach. In this latter, samples with resonance 
frequencies observed in correspondence to a minimum of the 
cross-phase are classified separately in a third class, namely 
“PBL”. By combining this approach with the one proposed 
in Foldes et al. (2021), it is possible to develop an automated 
monitoring procedure, to efficiently analyze long-time inter-
vals, and to produce extensive statistics useful for further 
study. The present manuscript is organized by describing 
the data set used in the analysis in Sect. 2. Section 3 widely 
explains the ML procedures, including data pre-processing 
and transformation. The results are shown in Sect. 4, first 
for the binary and then for multi-classification approaches. 
Finally, in Sect. 5, the novel introduced algorithm is applied 
in combination with the one proposed in Foldes et al. (2021) 
on a test set including a geomagnetic storm.
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2  Data

The data set adopted in this analysis extends the one 
already used in Foldes et al. (2021) for the pair of mid-lat-
itude EMMA stations Tartu-Birzai (hereafter TAR-BRZ). 
In fact, in this case, we include also times when a reso-
nance was not observed, so the data set consists of a more 
significant number of samples ( N = 14, 910 ) covering 
several intervals between 2012 and 2018, as summarized 
in detail in Table 1. The data set comprises very different 
geomagnetic conditions, ranging from longstanding qui-
escent periods to moderate and strong geomagnetic storms 
that have been studied and characterized in several studies 
(Piersanti et al. 2017; Pezzopane et al. 2019; Vellante et al. 
2021; Del Corpo and Vellante 2023). The data set con-
sists of Fourier cross-phase spectra and, where available, 
validated fundamental resonance frequencies calculated 
every 30 min through a well-established procedure imple-
mented by Del Corpo et al. (2019); this ensures reliable 
frequencies and cross-phase spectra with high resolution. 
The spectra are computed every 30 min over a 2-h run-
ning window. In addition, the resulting spectrum can be 
smoothed over a selectable range of frequencies (11 or 
more) to reduce the statistical fluctuations.

The data set includes daytime and nighttime frequen-
cies, which are the subject of analysis in this work, 
although the reliability of nighttime resonance frequencies 
is still debated. Indeed, the night-side region of the Earth’s 
magnetosphere, particularly the conductivity level of the 
underlying ionospheric layer (Allan and Knox 1979), may 
not be suitable for sustaining standing Alfvèn waves. Con-
sequently, the observed frequencies might correspond to 
free-end modes in these situations. Another particular con-
dition occurs when one footprint of the resonant field line 
is in the dawn/dusk sector (hereafter “penumbra"); in this 
case, quarter-wave modes are likely to be observed (Obana 
et al. 2008, 2015). The various analyses performed in our 
ML framework try to consider all of these possible situa-
tions, either a priori to better evaluate the performance of 
our algorithms under different conditions, or a posteriori 
to have a clearer interpretation of the results.

The data set is divided on a time-basis into training 
(70%) and test set (30%). Notably, the training set spans 

from DoY 266, 2012, to DoY 235, 2015; the remaining 
days are in the test set. This particular division is adopted 
to ensure, at first, that training and test sets are not corre-
lated, as it might happen when they are randomly selected. 
Second, but most importantly, the percentage between the 
different classes is the same in the train and test sets (see 
Fig. 1); this makes these sets as representative as possible 
of the entire data set. The latter choice is important, in 
particular, when dealing with highly unbalanced data sets. 
In addition, a time-basis split resembles what will happen 
in an operational scenario, when the FLR frequencies are 
estimated on the new data, while the past information are 
available for training. Figure 1 shows in panel (a) the num-
ber of samples divided into three classes (i.e., “NoFreq”, 
“Freq” and “PBL”) and in panel (b) for the binary clas-
sification. Panels c) and d) in Fig 1 show the histograms 
of the indices Kp and Dst for the training and test set. The 
two indices, among many others, are commonly used to 
evaluate the intensity of geomagnetic disturbances. We can 
appreciate how the division of the data set represents the 
variety of geomagnetic conditions that can be observed in 
our data; this also ensures homogeneity between the train-
ing and test sets. The input data are available at https:// doi. 
org/ 10. 5281/ zenodo. 83211 86 (Foldes et al. 2023).

3  Methods

The input, composed of one-dimensional (1D) Fourier 
cross-phase spectra, is normalized (as in Foldes et  al. 
(2021)) before applying the classification procedure. 
Data normalization is often applied, especially in the case 
of data composed of variables with extensive numerical 
ranges; this is done to improve the performance of ML 
algorithms, since they compute gradients in the back-
propagation process, which are particularly sensitive to 
the magnitude of the input variables. Then, each sample 
is prepared by assigning a specific class: “NoFreq" if no 
resonance frequency has been observed, “Freq" if there is 
a validated frequency for that sample and “PBL" when the 
frequency has been presumably evaluated across the plas-
masphere boundary layer. This classification is helpful, 
especially in recognizing the latter; indeed, as mentioned 
earlier, the cross-phase for estimating the FLR frequency 

Table 1  Detail of the data set of 
Tartu-Birzai: Lat. 57.2◦ , Lon. 
25.6◦ , L=2.9

YEAR 2012 2013 2014 2015 2016 2017 2018

DoY 266–336 72–86
145–162
177–200
275–287

45–68 72–90
98–116
169–178
224–245
352–362

15–30
284–295

146–153
195–209
248–264

234–246

# samples 3,335 3,262 1,121 3,743 1,213 1,612 624

https://doi.org/10.5281/zenodo.8321186
https://doi.org/10.5281/zenodo.8321186
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needs to be reversed in this situation. In this analysis, we 
compare the multi-classification approach (i.e., 3 classes) 
with a binary classification for two main reasons: first, 
the inclusion of “PBL” samples is not important for every 
pair of stations, since the position of the plasmapause 
may reach low latitudes only during extremely severe 

geomagnetic storms. Second, the plasmapause samples 
are generally a tiny percentage of the entire data set, also 
at higher latitudes, representing a challenging addition to 
the classification problem that has to be compared with 
the possible advantages achievable by considering them. 
In the case of binary classification, the samples initially 
defined as “PBL” are assigned to the “NoFreq” class.

0 2000 4000 6000 8000
Samples

NoFreq.

Freq.

PBL

a)

Train Test

0 2000 4000 6000 8000
Samples

NoFreq.

Freq.

b)

0 1 2 3 4 5 6 7 8 9
Kp index

10−3

10−2

10−1

P
D
F

c)

-200 -100 0 50
Dst index

10−4

10−3

10−2
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Fig. 1  Overview of the data set divided into training (blue) and test 
(orange) set for the considered classes (i.e., “NoFreq”, “Freq” and 
“PBL”). Panels a and b show the histogram of the classes for both the 
binary, b), and multi-classification, a problem. The data set is divided 

into 70% training and 30% test on a time-basis. Panels c and d show 
the Probability Distribution Function (PDF) of the Kp and Dst indi-
ces, respectively, for the training and test sets (color figure online)

Fig. 2  Schematic representation 
of the automated procedure of 
the field line resonance frequen-
cies detection with a binary 
classification as the first stage. 
If a multi-class classification is 
instead adopted, both “Freq” 
and “PBL” samples are moved 
to the regression stage
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3.1  Classification algorithm

The classification algorithm represents the first step of the 
ML procedure (left block of Fig. 2), and it has been devel-
oped employing the XGB algorithm (Chen and Guestrin 
2016). XGB is an efficient and versatile package for applying 
tree-based boosting algorithms, which provides high accu-
racy in various problems and good scalability with high-
dimensional datasets. Recently, the XGB algorithm has been 
successfully used to tackle several regression and classifi-
cation problems in ML; Foldes et al. (2021) showed that it 
represents the optimal choice among the tested algorithms in 
estimating FLR frequencies from cross-phase spectra at dif-
ferent latitudes and for variable geomagnetic conditions. The 
classification algorithm takes as input cross-phase spectra 
averaged over 2 h and sampled every 30 min (being the time 
resolution of the validated frequencies) and returns the prob-
ability vector p whose components must verify 

∑
i pi = 1 , 

with i ranging in the number of classes and indicating the 
probability that a given sample belongs to the ith class. The 
predicted class, for the jth sample, is then determined as the 
class with the maximum probability, cj = argmaxi[pij] . After 
the classification stage, all the samples classified as "Freq" 
automatically move to the next step, which involves estimat-
ing the FLR frequency values. The technique, implemented 
in Foldes et al. (2021) (right block in Fig. 2), uses the XGB 
as the regression algorithm with the same cross-phase spec-
tra as input. In the case of the multi-classification approach, 
even the “PBL” samples move to the regression step, but 
the input data must be modified before estimating the reso-
nance frequency value. Indeed, as already introduced, the 
cross-phase technique for pairs of stations mapping across 
the plasmapause can be applied by inverting the order of 
signals before the Fourier cross-analysis; this can also be 
expressed in terms of reversing the cross-phase spectrum 
( Δ�PBL = −Δ� ) computed with the usual order (i.e., pole-
ward station as the first point). All the remaining samples, 
classified as “NoFreq”, are discarded at this stage. However, 
the pipeline could be enriched by including additional steps 
that perform other tests on the excluded samples to mini-
mize the loss of information further. The entire procedure 
is depicted in Fig. 2, and it is designed to be included in the 
ASI (Italian Space Agency) Space Weather Infrastructure 
[Caesar project (Laurenza et al. 2023)], which includes the 
plasma mass density sounding by EMMA measurements.

3.2  Moving threshold technique

In ML classification algorithms, the amount of samples per 
class is often crucial to creating a model that can general-
ize its performance to many real-world applications. Usu-
ally, working with imbalanced classes leads to an algorithm 
prone to overpredict the predominant class and to a higher 

classification error rate for the other, which in many situa-
tions is the class of interest (see e.g., Stumpo et al. (2021)). 
As shown in Fig. 1, our data set manifests different levels of 
imbalance when considering a binary or a multi-classifica-
tion problem. Indeed, in the case of only two classes (top-
right panel), the ratio between “NoFreq” (NF) and "Freq" 
(F) samples is ≈ 0.5 , while for the multi-classification (top-
left panel), the ratio between “PBL” samples and “Freq” 
is ≈ 0.013 and between “PBL” and “NoFreq” ≈ 0.020 . The 
probability threshold is generally set by default to 0.5 for 
binary classifications, which is often not the optimal choice 
for imbalanced data. Therefore, adjusting the decision 
threshold is one of the most common strategies in these sce-
narios. The moving threshold technique developed in this 
paper is simply a greedy search of the set parameters wi , 
with i ∈ [NF, F, PBL] , in an equally spaced grid [0, 1] × [0, 1] 
that maximizes the chosen score expressing the classification 
performance. The metric adopted for the binary problem is 
the True Skill Score (TSS)

with TP being true-positive, FP false-positive, TN true-neg-
ative, and FN false-negative. The TSS metrics is defined as 
the difference between the probability of detection, the first 
term right-hand side in (1), and the false-positive rate; it 
ranges between -1 and 1, and it maximizes when the prob-
ability of detecting TP is maximum, and simultaneously the 
ratio of FP is minimum. For the multi-classification algo-
rithm, the score is defined as

where FPNF and TNNF are the false positive and true nega-
tive, respectively, as defined considering only the “NoFreq” 
class. This custom score emphasizes minimizing the amount 
of misinformation passing between the two ML stages. For 
this specific task, the two performance metrics proved to be 
the best choice for implementing an operational tool, hav-
ing as the first objective the need to minimize the amount 
of erroneous information, as we will largely appreciate in 
the next section. In this application, the latter represents the 
FLR frequencies estimated when it is impossible to detect 
resonances. In other words, the main aim was to minimize 
the number of “NoFreq” samples classified as "Freq" in the 
first ML stage; this reduces the errors propagating between 
the two steps. The parameters resulting from this procedure 
can be used to update the output probability for each class 
obtained from the classifier, as p̃i = wipi∕

∑
i wi . The class 

with the highest modified probability p̃i will give the final 
classification. Other techniques for dealing with unbal-
anced data can be adopted, such as resampling the data set 

(1)TSS =
TP

TP + FN
−

FP

FP + TN

(2)MCS = 0.25 ∗
FPNF

FPNF + TNNF

+ 0.75 ∗ TSS,
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or generating synthetic samples for the minority class (Wang 
et al. 2021; Kumar et al. 2022). However, these approaches 
modify the initial ratio between classes, which is another 
important feature for creating a proper operational algorithm 
and thus should be kept fixed as in a real case scenario, also 
during the training/validation stage of the algorithm. On the 
contrary, the moving threshold is a kind of penalization tech-
nique where particular attention is paid to minority classes, 
because misclassification of these samples usually does 
not affect the overall performance of the algorithm, even 
using appropriate metrics sensitive to unbalanced data sets 
(e.g., F1-score, Area Under the Curve, G-Mean, k-Cohen, 
and many others) (McHugh 2012; Cuadros-Rodríguez et al. 
2016). In addition, it can be run routinely to update the 
model weights as the ratio between classes changes.

4  Results and discussion

We analyzed the performance of the classification algo-
rithm, paying particular attention to the percentage of false 
positives, representing the amount of incorrect information 
provided by our model, since the tool must be as accurate 
as possible for operational purposes. As explained, we fol-
lowed the same approach in choosing the proper metric for 
the moving threshold technique. In this section, we first 
evaluate the performance of the implemented classification 
algorithm against a binary (i.e., “Freq”/“NoFreq”) and then 
with a multi-class problem (i.e., “Freq”/“NoFreq”/“PBL”). 
Moving threshold results are presented for both applications, 
and performance is measured using the confusion matrix. It 
represents a straightforward visualization in a specific table 
whose cells identify the percentage of false (true) positive 
and (false) true negative (Stehman 1997) and allows for a 
direct evaluation of the amount of incorrect (correct) infor-
mation provided by our algorithm. Finally, the classification 
technique is tested in combination with the ML algorithm 
implemented in Foldes et al. (2021) to determine the FLR 
values. The case study comprises seventeen days between 
the 5th and 22nd of September 2017; it includes a geo-
magnetic storm, quiet periods, and a couple of days where 
the FLR frequency was selected in correspondence with a 
cross-phase minimum, and so presumably the station pair 
was probing inside a steep plasmasphere boundary layer.

4.1  Binary classification

A binary classifier is the most basic classification algorithm 
that can be developed; moreover, in our data set, the simple 
division in “Freq” or “NoFreq” samples significantly reduces 
the class unbalance, as highlighted in Fig. 1(a)–(b). Also, in 
this case, however, we employ the moving threshold tech-
nique for fine-tuning the algorithm. It is worth recalling that 

for a perfectly balanced data set (equal number of samples 
per class N1 = N2 ), the moving threshold would return equal 
thresholds for the two classes w1 = w2 = 0.5 . The results 
for choosing the optimal threshold are represented in Fig. 3. 
Several metrics are shown, together with the selected one 
(True Skill Score, TSS, red dash-dotted curve), with some-
times completely different trends as the class weight wNF 
changes. As expected, the weights appear inversely propor-
tional to the percentage of samples per class; however, they 
are also affected by the chosen score. Indeed, as evidenced 
by comparing the various scores in Fig. 3 obtained with the 
moving threshold procedure, different metrics may result in 
different weights. Particularly evident is the difference for 
small wNF between the F1-score (blue solid curve), the area 
under the curve (AUC, orange dashed curve), and the others. 
When wNF ≈ 0 , all the samples are classified as “Freq”, and 
the amount of false negatives is null, while the number of 
true positives is maximized; for this reason, the F1-score, 
which is particularly sensitive to the correctly classified 
items, is still high even when the algorithm is biased. The 
AUC, on the other hand, has an initial value of ∼ 0.5 , indi-
cating a random classifier. However, the AUC and the TSS 
give the same optimal thresholds, wNF ≃ 0.58 and wF ≃ 0.42 , 
and thus, both represent a suitable choice for our applica-
tion. The results of the binary classification on the test set 
( Ntest ≃ 4, 500 ) are summarized in the three confusion matri-
ces in Fig. 4. The main diagonal shows the percentage of 
data correctly classified per class (true negatives and true 
positives), while the values out-of-diagonal represent false 
negatives (lower left) and false positives (upper right). The 
latter, in particular, should be kept as low as possible in 
our ML pipeline to minimize the amount of wrong informa-
tion spreading from the classification to the regression step 
(see Fig. 2). The percentage of correct samples is PF ≃ 77% 

0.0 0.2 0.4 0.6 0.8 1.0
Weight (wNF )

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or
e

wNF = 0.579, wF = 0.421

F1-score
AUC
k-Cohen
TSS
Best score

Fig. 3  The behavior of different evaluation metrics, namely F1-score 
(blue  solid curve), Area Under the Curve (AUC, orange  dashed), 
k-Cohen coefficient (green  dotted), and True Skill Score (TSS, 
red dot-dashed), as a function of the weight w

i
 adopted for rescaling 

the classification probabilities. The curves span over the weight for 
class 1 ("No Freq."), and the other weight is defined as w

2
= 1 − w

1
 . 

The black vertical dashed line indicates the optimal weight obtained 
by looking at the TSS maximum (black dot) (color figure online)
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for the “Freq” class and PNF ≃ 86% for the other, while the 
∼ 14% of samples, passing from the first to the second ML 
stage, are wrong and approximately 23% of FLR frequen-
cies are lost during the procedure. For this reason, the algo-
rithm could be further developed by including an additional 
method to handle discarded samples during the classifica-
tion step; in this way, one might reduce the amount of data 
with a validated frequency being removed by the classifier. 
After the algorithm test, the samples are divided in daytime 
(when both footprints of the magnetic field line are sunlit) 
and umbra/penumbra (one or both footprints are in the dark 
side) to better observe how the classification errors depend 
on these two conditions. The results of the other two con-
fusion matrices in Fig. 4 (center and right) highlight how 
changing the class ratio affects the algorithm performance; 
indeed, during the daytime, the number of observed frequen-
cies is far larger than the other class, and the percentage of 
true positives is significantly higher ∼ 83% than the over-
all values ∼ 77% . The opposite happens during nighttime 
hours when the validated frequencies are rare and difficult 
to observe (Del Corpo et al. 2019; Chi et al. 2013), and thus, 
the percentage drastically drops to ∼ 62% . This result, in 
particular, suggests that more specific algorithms could be 
implemented in principle to work separately on diurnal and 
nocturnal samples to reach higher performances.

4.2  Multi‑class classification

The same procedure has been applied to the multi-class algo-
rithm studied in this section. Here, along with the “NoFreq” 
and “Freq” classes, we exploited the plasmapause position 
information provided by our data set to create an additional 
class referring to resonance frequencies measured across the 
plasmasphere boundary layer by TAR-BRZ, the “PBL” class 
(see Fig. 1). As already mentioned, in these conditions, the 
resonance frequencies must be searched as minima in the 
cross-phase spectra instead of maxima (see Del Corpo et al. 

(2019) and reference therein), and therefore, some adjust-
ments must be done to restore the typical situation. Indeed, 
as previously mentioned, by multiplying the cross-phase by 
-1 the criterion is the same as for standard resonances (i.e., 
detection of maxima in the cross-phase spectrum), which 
allows for easier automation of the regression algorithm, 
and consequently of the entire procedure. The complexity 
of adding a third class lies in the fact that we are dealing 
with a highly unbalanced data set, as evidenced by Fig. 1(a); 
indeed, the frequencies belonging to “PBL” represent a 
tiny percentage of the entire set. This happens, because to 
observe a cross-phase reversal, the location of the pair must 
be appropriate (ideally, both stations mapping in the plas-
mapause region), and the mass density variation in the plas-
mapause region must be quite steep [steeper than L−8, (Kale 
et al. 2007)]. These requirements make the occurrence of 
cross-phase reversal quite low at all L values; in particular, 
Del Corpo et al. (2019) found that the maximum occurrence 
(with respect to the total number of FLRs detected) is about 
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Fig. 4  Confusion matrices (CMs) obtained from the classification 
of the test set. Percentages on the main diagonal represent the sam-
ples correctly classified, while the off-diagonal values are for false 
positives (top right) and false negatives (bottom left). The middle and 

right CMs are computed a posteriori by looking for each sample if 
both the footprints are sunlit (middle) or if at least one footprint is in 
the dark side of the ionosphere (right)
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5% at L ∼ 4 , and ∼ 1% for the TAR-BRZ pair. Consequently, 
the moving threshold technique, whose results are shown 
in Fig. 5, is even more important in this case. The modified 
weights w� (with � ∈ [NF, F, PBL] ) are inversely propor-
tional to the percentage of samples per class, coherently to 
what is observed for the binary classification. There is a 
relatively large area (dark red) in which the optimal weights 
could be chosen while still maintaining high performance; 
however, the ratio of false negatives to false positives also 
varies slightly in this region. Thus, as for the binary classi-
fier, we selected those values of wi that minimize the number 
of false positives (i.e., “NoFreq” classified as “Freq”).

The results of the multi-classification approach are shown 
using the confusion matrices, in the same fashion as before, 
in Fig. 6. Interestingly, the addition of a third class seems 
not to affect the overall performance of the classification 
algorithm, which in some cases shows even higher percent-
age than the binary counterpart. For instance, the number of 
true negatives (i.e., correctly classified “NoFreq”) detected 
is significantly greater than ∼ 89% , resulting in a tiny per-
centage of false negatives (FNs), which was the main goal of 
our optimization. On the other hand, the number of correctly 
detected frequencies (true positives) slightly decreases by 
∼ 3% , passing from ∼ 77% to ∼ 74% . The newly introduced 
class, “PBL”, shows an accuracy of ∼ 77% , whereas the 
remaining percentage is classified as “NoFreq”. This fact 
suggests that the trained algorithm tends to look for clear 
maxima in a specific range of frequencies where resonances 
occur most often at a given latitude. The analysis seems to 
indicate that the multi-classification approach does not sig-
nificantly degrade the algorithm’s performance and can pro-
vide valuable information on the location of the plasmapause 
when applied to the entire EMMA network. However, the 
same analysis must be conducted with other stations pairs 
because of the different responses of the ML algorithm, as 
highlighted in Foldes et al. (2021). Indeed, especially at high 
latitudes, resonance frequencies can be very small (a few 
mHz), and comparable to the spectral resolution, so they are 
more challenging to identify. The middle and right matri-
ces in Fig. 6 evidence the same difference between day and 
nighttime already observed for the binary classification.

5  Discussion

5.1  Automatic detection of FLR frequencies

In the results section, we showed the application of clas-
sification algorithms for identifying periods with observ-
able FLR frequencies. Then, those samples can be ana-
lyzed with the ML regressor implemented in Foldes et al. 
(2021) for the resonance value estimation. Here, we test 
the two approaches combined on 17 days between the 5th 
and the 22nd of September 2017, allowing us to evaluate 
the performance of the automatic FLR detection for the 
TAR–BRZ stations pair ( L = 2.9 ). This interval of days 
includes a geomagnetic storm that occurred at the begin-
ning of September 2017 and was thoroughly studied in 
terms of solar events and geomagnetic effects (Hajra et al. 
2020). On the Sun, the occurrence of intense solar flares 
(Owolabi et al. 2020; Chakraborty et al. 2021), coronal 
mass ejections (CMEs, e.g., Werner et al. (2019)), as well 
as solar energetic particles (SEPs) Bruno et al. (2019); Jig-
gens et al. (2019) and radio bursts (Sato et al. 2019) have 
been extensively observed and analyzed. Subsequently, 
geomagnetic and geoelectric effects have been recorded 
in circumterrestrial space and on Earth, ranging from the 
plasmasphere (Obana et al. 2019; Di Mauro et al. 2021) 
and ionosphere (Zhang et al. 2019; Owolabi et al. 2020; 
Alfonsi et  al. 2021) to the generation of geomagneti-
cally induced currents (GICs, Piersanti et al. (2019)) and 
scintillations on the Global Navigation Satellite System 
(GNSS) Linty et al. (2018). Here, we report the temporal 
variation of the Kp index in the top panel of Fig. 7, which 
shows values around Kp ≈ 8 between the 7th and 8th of 
September 2017. Using a dataset with more disturbed and 
variable geomagnetic conditions is a more realistic and 
challenging test for our procedure, so we chose such a 
range of days. The test set proposed here is first analyzed 
using the multi-classification algorithm; then, all the sam-
ples classified as “Freq” or “PBL” move to the next ML 
stage to estimate the FLR frequency value (right block in 
Fig. 2). The middle panel in Fig. 7 shows the relative error 

Fig. 6  Confusion matrices 
(CMs) obtained from the multi-
class classification of the test 
set. As for the previous results, 
the middle and right CMs are 
computed a posteriori 
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�r between the validated resonance frequency fval and the 
frequency fest , estimated using the regression algorithm in 
Foldes et al. (2021). The colors represent the actual class 
of samples, so the “NoFreq” samples (red squares) have 
no validated frequency from which to calculate the relative 
error. Errors slightly underestimate the resonance frequen-
cies, since negative bars are usually larger than positives. 
However, apart for a single point, the relative error appears 
pretty constant, and on average around |𝜖r| ≲ 10% , for the 
entire interval and thus independently on the geomagnetic 
conditions. For the “PBL” samples (green triangles), �r 
seems higher, although we do not have sufficient statistics 
to confirm this hypothesis in this test set. Finally, the bot-
tom panel in Fig. 7 shows the values of the frequencies 
estimated by the automatic procedure, distinguished by 
color as before. The quasi-periodic pattern of resonances, 
with the frequency decreasing during the day, highlights 
the diurnal breathing of the plasmasphere (Park 1970). 
Red points, representing wrong samples passed from the 
classification to the regression algorithm, tend to occur 
either before or after long traces of recorded frequencies 
(blue circles), often closely following the overall behavior 
as shown, for instance, for DoY 250–251 and 256–257 in 
Fig. 7. The algorithm seems to correctly estimate higher 
frequency values for “PBL” points, as expected from the 
drop of the plasma mass density in this region.

5.2  Conclusion

This analysis represents a preliminary assessment of apply-
ing Machine Learning (ML) algorithms to automatically 
identify FLR frequencies in the inner magnetosphere using 
the EMMA network. Our approach, and the subsequent esti-
mation of the plasmaspheric mass density using the Singer 
equation (Singer et al. 1981), represents a tool for real-time 
monitoring of the plasmasphere dynamics and for analyzing 
very long periods. The XGB classification algorithm, already 
adopted for regression in Foldes et al. (2021), showed relia-
ble performance, with more than ∼ 74% of correctly detected 
frequencies and less than ∼ 14% of false information for both 
the binary and the multi-class approaches. The results gener-
ally do not depend on geomagnetic activity, as highlighted in 
Foldes et al. (2021). The sample analyzed here is too short 
to confirm the statement; in addition, at different latitudes, 
the geomagnetic activity might affect the results differently. 
The automated procedure proposed here is not primarily 
intended to replace semi-automated pipelines, which are a 
more accurate approach, because they include the knowledge 
of experienced users. However, we believe that ML methods 
may be successful for their efficiency and versatility, espe-
cially for the nowcasting and forecasting of the plasmasphere 
mass density and the analysis of long periods, allowing the 
production of significant statistics. The present results need 

Fig. 7  Results of combining 
the classification and regres-
sion ML algorithms. The first 
panel (top) is the daily Kp 
index, indicating the geomag-
netic activity level. The middle 
panel shows the percentage 
error between the estimated and 
validated resonance frequencies, 
and the bottom panel highlights 
the estimated frequency’s 
value (in mHz). Colors identify 
samples classified as "NoFreq" 
(red squares), "Freq" (blue cir-
cles), and "PBL" (green train-
gles) during the first ML stage 
(color figure online)
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to be confirmed mainly using several pairs of magnetometer 
stations of the EMMA network and extending the data set to 
include more different geomagnetic conditions.
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